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Techniques for denoising natural images have seen
incredible advances over the past several decades.
Recent developments in denoising techniques have not
been improving image quality much beyond the current
state of the art. This realization led to a question: how
well can we denoise a natural image? Work toward
answering this question has been performed by multiple
researchers. Recent statistical analyses have shown that
these algorithms are approaching optimality with respect
to minimum mean squared error when denoising natural
images directly. Figure 1 shows the results of a state of
the art denoising algorithm.

One notable approach to answering this question was
found by Anat Levin and Boaz Nadler who found
optimality bounds for denoising natural image patches
without using any assumptions about the distribution of
natural images. In this work we are studying optimality
bounds for denoising geometric features of an image
with the hope of discovering if there is more potential
for improvement when working within this framework.
More specifically, we want to consider denoising image
curvature and then reconstructing the original image.
Finding optimal denoising bounds for this new
framework could be a breakthrough that would allow
for the development of algorithms that far surpass the
state of the art when denoising natural images directly.
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II. Background
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A noisy image " can be modeled by considering
" = $ + &

where $ is the clean image and & is a random noise
vector with entries that are independent and identically
distributed according to a Gaussian with zero mean and
variance !'. The goal of image denoising is to estimate a
clean image "( from ".

1 “Is Denoising Dead?”, Chatterjee and Millanfar.
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patch size. Computationally, the LLMN+O and LLMN+P
will be similar for large sample size and will give an 
accurate estimate for the true optimal LLMN. 

IV. Current Work
We are currently trying to compute these bounds for
large sample sizes. When Levin and Nadler performed
this experiment with natural image patches, they
independently and randomly sampled L = 2,000 and
0 = 10HR image patches from a set of about 20,000
natural images. Here we need to consider similar sized
samples for the bounds to be statistically significant. The
experiment as described is computationally intensive.
Small scale experiments using MATLAB ran in about 80
hours with L ≈ 100 and 0 ≈ 1,000 . Therefore,
parallelizing the code is a necessity. We started with
small sample sizes as a proof of concept and are now
working towards parallelizing the computation across a
cluster with multiple nodes to make it tractable.

To parallelize this computation, we will use the Condor
job scheduler running on one machine inside a parallel
cluster, see Figure 4. After computing the conditional
mean and variance for each patch, we can easily
compute the LLMN+O and LLMN+P .
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The next step is to finish processing the 0 = 10HR image
patches and attempt to run the experiment on the entire
data set. Details from Levin and Nadler’s paper suggest
that this computation will take about one week with a
100 node cluster. If this holds true for the curvature
experiment, the code will need to be further optimized
and we will need to add many more nodes to the
existing cluster. After running the experiment, we would
like to attempt to apply methods used in “Patch
complexity, finite pixel correlations and optimal
denoising” by Levin and Nadler to bounding curvature
denoising.

Setting up a large parallel cluster with Condor and
MATLAB has proven difficult. Until this process is
finalized, we have run trials on small sample sizes on a
single machine. One trial was run with L = 1,000 and
0 = 10,000. The results from this trial gave us peak
signal-to-noise bounds for the LLMN+O and LLMN+P that
were not very tight. This evidence emphasizes the need
for much larger sample sizes.
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Figure 4. Parallel Approach
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III. Model

One measure of quality for an image denoising algorithm
is the mean squared error, MSE, defined as
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where & is the number of pixels in the images.

It was proposed by Bertalmío and Levine that an image
could be denoised by denoising the curvature of its level
lines and then reconstructing the original image from the
denoised curvature, Figure 3. The curvature of the level
lines of an image ",κ("), can be defined as
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The minimum mean squared error, MMSE, is a lower
bound on the MSE. The MMSE can be defined as

LLMN = 	a 8 " =	b2 " 8 " B"

where 8 " is the conditional variance. This MMSE is the
lowest achievable denoising error by any denoising
algorithm. The goal is to estimate the MMSE of an image
patch y with 2($) as the density of assumed clean patches
and 2(") the density of noisy patches. This estimation can
be adapted for curvature images by replacing y with κ " .
To estimate the MMSE, we can approximate it and bound
it above and below. Given M clean and noisy pairs of
patches {($V-, "-)}-JH

X and N assumed clean patches
{$5}5JH

\ , both independently randomly sampled from
natural images, we can define the upper and lower bounds
as
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Figure 2. How Good Can we Denoise Data?
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